Lithofacies Classification from Well Log Data using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

نویسندگان

  • Pawalai Kraipeerapun
  • Chun Che Fung
  • Kok Wai Wong
چکیده

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification. Keywords—Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of artificial neural networks for the prediction of carbonate lithofacies, based on well log data, Sarvak Formation, Marun oil field, SW Iran

Lithofacies identification can provide qualitative information about rocks. It can also explain rock textures which are importantcomponents for hydrocarbon reservoir description Sarvak Formation is an important reservoir which is being studied in the Marun oilfield, in the Dezful embayment (Zagros basin). This study establishes quantitative relationships between digital well logs data androutin...

متن کامل

Multiclass Classification using Neural Networks and Interval Neutrosophic Sets

This paper presents a new approach to the problem of multiclass classification. The proposed approach has the capability to provide an assessment of the uncertainty value associated with the results of the prediction. Two feed-forward backpropagation neural networks, each with multiple outputs, are used. One network is used to predict degrees of truth membership and another network is used to p...

متن کامل

Multi-Group Classification Using Interval Linea rProgramming

  Among various statistical and data mining discriminant analysis proposed so far for group classification, linear programming discriminant analysis has recently attracted the researchers’ interest. This study evaluates multi-group discriminant linear programming (MDLP) for classification problems against well-known methods such as neural networks and support vector machine. MDLP is less compli...

متن کامل

A committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf

Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a commi...

متن کامل

Binary classification using ensemble neural networks and interval neutrosophic sets

This paper presents an ensemble neural network and interval neutrosophic sets approach to the problem of binary classification. A bagging technique is applied to an ensemble of pairs of neural networks created to predict degree of truth membership, indeterminacy membership, and false membership values in the interval neutrosophic sets. In our approach, the error and vagueness are quantified in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007